Synthetic pyrrole-imidazole polyamide inhibits expression of the human transforming growth factor-beta1 gene.
نویسندگان
چکیده
Pyrrole-imidazole (Py-Im) polyamides can bind to the predetermined base pairs in the minor groove of double-helical DNA with high affinity. These synthetic small molecules can interfere with transcription factor-DNA interaction and inhibit or activate the transcription of corresponding genes. In the present study, we designed and synthesized a Py-Im polyamide to target -545 to -539 base pairs of human transforming growth factor-beta1 (hTGF-beta1) promoter adjacent to the fat-specific element 2 (FSE2) to inhibit the expression of the gene. Gel mobility shift assay showed that the synthetic Py-Im polyamide binds to its corresponding double-strand oligonucleotides, whereas the mismatch polyamides did not bind. Fluorescein isothiocyanate-labeled Py-Im polyamide was detected in the nuclei of human vascular smooth muscle cells (VSMCs) after 2- to 48-h incubation. Py-Im polyamide significantly decreased the promoter activity of hTGF-beta1 determined by in vitro transcription experiments and luciferase assay. In cultured human VSMCs, Py-Im polyamide targeting hTGF-beta1 promoter significantly inhibited expressions of hTGF-beta1 mRNA and protein. These results indicate that the synthetic Py-Im polyamide designed to bind hTGF-beta1 promoter inhibited hTGF-beta1 gene and protein expression successfully. This novel agent will be used for the TGF-beta-related diseases as a gene therapy.
منابع مشابه
Development of gene silencing pyrrole-imidazole polyamide targeting the TGF-beta1 promoter for treatment of progressive renal diseases.
Pyrrole-imidazole (Py-Im) polyamides are nuclease-resistant novel compounds that inhibit gene expression by binding to the minor groove of DNA. A Py-Im polyamide that targets rat TGF-beta1 was designed as a gene-silencing agent for progressive renal diseases, and the distribution and the effects of this polyamide on renal injury were examined in Dahl-salt sensitive (Dahl-S) rats. For identifica...
متن کاملBiophysical Characterization of Synthetic Imidazole and Pyrrole Containing Analogues of Netropsin and Distamycin that Target Specific DNA Sequences for the Treatment of Various Diseases
The development of small-molecules which target nucleic acids, more specifically the minor groove of DNA, in a sequence specific manner and control gene expression are currently being investigated as potential therapeutic compounds for the treatment of various diseases, including cancer, as well as viral and bacterial infections. The naturally occurring compounds netropsin and distamycin have b...
متن کاملReduction of Dimethylnitrosamine-Induced Liver Fibrosis by the Novel Gene Regulator PI Polyamide Targeting Transforming Growth Factor β1 Gene.
Pyrrole-imidazole (PI) polyamide is a novel gene regulating agent that competitively inhibits transcription factor binding to the promoter of the specific target gene. Liver fibrosis is an integral stage in the development of chronic liver disease, and transforming growth factor β (TGFβ) is known to play a central role in the progression of this entity. The aim of this study was to evaluate the...
متن کاملTargeted suppression of EVI1 oncogene expression by sequence-specific pyrrole-imidazole polyamide.
Human ectopic viral integration site 1 (EVI1) is an oncogenic transcription factor known to play a critical role in many aggressive forms of cancer. Its selective modulation is thought to alter the cancer-specific gene regulatory networks. Pyrrole-imidazole polyamides (PIPs) are a class of small DNA binders that can be designed to target any destined DNA sequence. Herein, we report a sequence-s...
متن کاملLow-Density Lipoprotein Receptor-1 Attenuates Restenosis of the Artery After Injury Novel Gene Silencer Pyrrole-Imidazole Polyamide Targeting Lectin-Like Oxidized
Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is a membrane protein that can support the binding, internalization, and proteolytic degradation of oxidized low-density lipoprotein. The LOX-1 expression increases in the neointima after balloon injury. To develop an efficient compound to inhibit LOX-1, we designed and synthesized a novel gene silencer pyrrole-imidazole (PI) polya...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 315 2 شماره
صفحات -
تاریخ انتشار 2005